Nonparametric Instrumental Variables Estimation
نویسندگان
چکیده
منابع مشابه
Applied Nonparametric Instrumental Variables Estimation
Instrumental variables are widely used in applied econometrics to achieve identification and carry out estimation and inference in models that contain endogenous explanatory variables. In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are used identify ...
متن کاملSpecification Testing in Nonparametric Instrumental Variables Estimation
In nonparametric instrumental variables estimation, the function being estimated is the solution to an integral equation. A solution may not exist if, for example, the instrument is not valid. This paper discusses the problem of testing the null hypothesis that a solution exists against the alternative that there is no solution. We give necessary and sufficient conditions for existence of a sol...
متن کاملInstrumental Variables Estimation of Nonparametric Models with Discrete Endogenous Regressors
This paper presents new instrumental variables estimators for nonparametric models with discrete endogenous regressors. The model speci cation is su ciently general to include structural models, triangular simultaneous equations and certain models of measurement error. Restricting the analysis to discrete endogenous regressors is an integral component of the analysis since a similar model with ...
متن کاملNonlinear and Nonparametric Regression and Instrumental Variables
We consider regression when the predictor is measured with error and an instrumental variable is available. The regression function can be modeled linearly, nonlinearly, or nonparametrically. Our major new result shows that the regression function and all parameters in the measurement error model are identified under relatively weak conditions, much weaker than previously known to imply identif...
متن کاملEstimation with Many Instrumental Variables∗
Using many valid instrumental variables has the potential to improve efficiency but makes the usual inference procedures inaccurate. We give corrected standard errors, an extension of Bekker (1994) to nonnormal disturbances, that adjust for many instruments. We find that this adujstment is useful in empirical work, simulations, and in the asymptotic theory. Use of the corrected standard errors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Economic Review
سال: 2013
ISSN: 0002-8282
DOI: 10.1257/aer.103.3.550